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ON THE THEORY OF CONDUCTIVE HEAT TRANSFER IN
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Abstract—Finite integral transform techniques are applied to the solution of three-dimensional,
transient heat-conduction problems with general time-dependent heat sources and boundary conditions.
The latter includes, as special cases, the boundary conditions of the first, second and third kind
{prescribed temperature, prescribed heat flux and Newtonian convection conditions) or any combina-

tion of these three, which are often encountered in engineering problems.

The solution is obtained in terms of quasi-steady and transient terms and is given in the form of
infinite series. From the solution it is shown how the general problem can be reduced to several
simpler ones for which solutions may usually readily be available in the literature. The paper con-
stitutes a generalization of a recent one in which the volume and surface source functions are assumed

separable in the space and time variables.

NOMENCLATURE

Ai(sﬂ) > Os
B‘(St) = 03
A>=0,B>0

a,
C(Am) or Cm,
Ckma

F(P),

Si(ss, D
flg, 0,

i,
Ji(x),

Js

K,
k,
m,
hy,

boundary coefficient func-
tions defined on Si;
constant boundary coeffi-
cients on circle r = q;
circle radius;

coefficients defined by (7);
coefficients defined by
(32);

initial temperature distri-
bution function in R;
source functions on Si;
source function on circle
r =a;

1,2,3,...,9;

Bessel function of the first
kind of order k and of
argument x;

09 132:*~~3q;

thermal conductivity of R;
0,1,2,..., c0;
L2...,0;

outward normal of S;;
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P 3
P, 1),

S,

Siy
(P, 1),

T gj(P, l‘),
To(" s s f)’
TI(P ’ t)s
T2(P ’ t)’

Z

(P),

3ig, Sog,

0
8_1"

point in R;

internal heat generation
function per unit time and
per unit volume;

number of co-ordinate sur-
faces of R;

homogeneous region in
P-space;

radial space co-ordinate in
plane circular polar co-
ordinates;

ith co-ordinate surface of
R;

point on S;;

temperature distributionin
R;

temperature distributions
defined by (11) or (26);
temperature  distribution
defined by (27);
temperature  distribution
defined by (18) or (19);
temperature distribution
defined by (24);

time variable;

volume in P-space;
Kronecker deita;

partial derivative with re-
spect to ¢;



OP, 1, 1) temperature distributions
defined by (20} or (21);

K, thermal diffusivity of R;

Ams eigenvalues in P-space;

Akm eigenvalues in r, g-space;

, dimensionless constant de-
fined by (31);

T, parameter and variable of
integration;

(Am, P) or o P), eigenfunctions in P-space;
drmlr, @), cigenfunctions in  r, -
space;

@, angular space co-ordinate
in plane circular polar co-
ordinates;

v, gradient vector in P-space;
V2, Laplace operator in P-
space;

: @), 0.

( )' ot 't NOT‘ i

O | rPa(P)( ) dV, finite integral transform of
()

) finite cosine transform of
( ) defined by (34).

INTRODUCTION

IN SOLVING beam vibration problems with time-
dependent boundary conditions Mindlin and
Goodman [1] used a modified separation-of-
variables method which was later extended by
Chow [2] and Archer [3] to reduce the non-
homogeneous boundary conditions to homo-
geneous ones. In a recent paper of this journal
Ojalva [4] applied this technique to solve heat-
conduction problems with time-dependent heat
sources and boundary conditions. In all of these
references the time-dependence of the boundary
conditions and of the heat source is introduced
by separable space and time functions. The
purpose of this paper is to determine the
temperature distributions in homogeneous, finite
continua for which internal heat generation rate
and boundary conditions are arbitrary functions
of space and time. The method used is the well-
known finite integral transform method which
dates back to 1936 in its first application to the
heat equation by Doetsch [5], and from that
time has been utilized constantly by many
researchers.

NURETTIN Y. OLCER

STATEMENT AND SOLUTION OF THE
PROBLEM

Consider a stationary, homogeneous, isotropic
region R with constant thermal properties. Let
its bounding surface S be composed of con-
tinuous co-ordinate surfaces S;, ¢ in number,
in a conveniently chosen three-dimensional
co-ordinate system. The equation of heat con-
duction [6] is

1 1 eT
72 _ —_—
PmR, >0, (1)
with the general boundary conditions
oT (P, t
Ai (s1) “‘“(“"“‘2 + Bi(s:)) T (P, 1) = fi(si, 1),
PonSi,t >0, (2)
and the initial condition
TP ty=F(P), PnR, t=0. &)

Consider the three-dimensional Sturm-Liou-
ville system

V2% (P) + X2, ém (P) =0, Pin R,

A; f)fl”.@ + Bi¢m (P) =0, PonS; (4b)

(4a)

With ¢4, (P) as kernel, a three-dimensional finite
integral transform of T (P, ¢) is defined as

T )= [ (A, YT (P, dV. (5

It follows, from the well-known theorems of
completeness and orthogonality of the eigen-
functions ¢, (P) satisfying system (4), that
T (P, t) can be expanded into a triple infinite
series as

(P, 1) :ilc (Am) ¢ (Am, PYT (A, 1), (6)

where

C(A 5= Ind* Om, P dV. (7
(6) is sometimes called the inversion formula
for (5). Applying the transform (5) to VET' (P, 1)
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and using the Gauss Theorem in region R one
gets

_ - oT (s,
VET (Am, £) 22.[&-[ m (81) — g:z J

i=1

a¢m (52)

— T (s3, £) ] — T (Am, 1),

which, on 1ncorporating (2) and (4b) becomes

V2T (A, 1) = z J Sbm((s)) (56, 1) dS;
i=1
— XT (Am, 1). (8

It is to be noted that if 4; = 0, [pm/A4; (s1)] is to
be replaced with [— 1/B; (s:)] . [0dm/Ons] in (8)
and all the results will be applicable for this case
also.

The application of (5) to both sides of (1)
yields, in view of (8), the following ordinary,
first order, linear differential equation

dT (Am, 1)

+ k2T (A, £) =%Q (m, 1)

a7
g s
e Z L.‘f’f{i—(&;i) fiundS. 9

i=

The solution to (9) subject to (3) transformed by
(5)is

T (A, 1) = exp (— xA2) {F (Am)
Q (Am, T)

+ x J.t exp (xA%7) [

(A”h si)

$(Am
+ZL{ A ) Ji (86, 7) dst]df}, (10

Thus, (6) used in conjunction with (7) and (10)
gives the solution to the problem.

The eigenfunctions ¢,(P) and the corre-
sponding eigenvalues Ap are to be determined
separately from (4). It is well established, in
standard works on the theory of eigenvalue
problems, that ¢, and A, each comprise a
discrete set of infinite terms which are all real.
In three-dimensional problems ¢, and A, will
each be made up of three components in general.
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It is therefore appropriate to speak of resultant
eigenfunctions and resultant eigenvalues (or
eigenfunction and eigenvalue vectors) in con-
nection with (4). The above results also apply
to the diffusion equation in n-dimensional space
providing the transform (5) is taken in the
n-dimensional space.

It cannot be shown directly from (6) that the
latter does satisfy the boundary conditions (2).
This is due to the convergence problems that
arise when dealing with series-form solutions.
To avoid this situation it is desirable to obtain
from (6) an alternate form of solution composed
of quasi-steady-state and transient parts. For
this purpose it is required that the temperature
functions To;(P, t) be solutions of the following
system:

b)
Vi (P,1) + ¢ Q(P,) =0, PinR, (lla)
0T (P, t
) TEED o gy T p ) =
= 8 fi (s, £), PonS. (11b)

Here it is necessary to assume further that
B;(s:) # Oforalli =1, 2,..., g, simultaneously.
Otherwise the solutions T (P, f) satisfying (11)
do not exist, unless

. Ji(si, 1)
8oi J’R Q(P,t)dV + K &y JSi 4: (5)

The application of the Gauss Theorem to
system (4) shows that

dS; =0.

X = Ca {JR [Vm (P 4V

+ ?L ig‘; (s0) dsi}, Ads) # 0,
(12a)
AL = Cm [ [Vém (PP AV, A;(s;) = O for all i.
(12b)

It follows from (12) that, excepting the case of
Bi(si) =0 for all i, which requires special
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attention, the values of A2 are all mom-zero.

Then, the application of (5) to q’E V2T (P, 1)
j=0

yields, in view of (11},

ZTO, (Am, 1) == A2 [ 0 (m, 1)
- i ;‘J ¢ (Am, 51)

ity 7
=1
Using (13), (10) is rewritten as
T O, 1) = 35 Tog (o 1) + exp (= wy0) {F (o)
i=

(s1, ) dsi}. (13)

8

= 1o Ooms 0) + s exp (= )

Tos (Am, 7) d]}. (14)

{6) can be written in the equivalent form

T@,0 =5 T (P,0 + 3 COm $ Om, P)

[T (Ams 1) -.“goToj e 0). (15)

Introducing (14) into (15) one gets
T(P, 1) =j§) Ty (P, +3 Cmm (P)
exp (— A20) {[5 bm (P) F(P) ¥

~ 3 Ux dm (7) Ty (,0) 4V

+ [hexp (<A27) .“R ém (P) Tos (P, v) dV d7]}.
(16)
Here the infinite series terms contain the To;
functions. An equivalent expression containing

the heat source and boundary terms is obtained
by introducing (13) into (16):

T (P, t)——EToj(P Z)+Z Con bm (P)

m=1
exp (— kA21) { | gn D F@ @Y

",\iz [lj b (P) O (P, 0) dV

+ZLI¢m (Si)ﬂ(si’ O)d&]
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11t
— L exp (kA% r) [Tija ém (P) Q (P, 1) dV

=D G as] o)

(17) may be preferred to (16) in cases where the
evaluation of the surface integrals is less
laborious than that of the volume integrals.

It can be shown, by direct substitution, that
(16) and (17) satisfy the differential equation (1),
the boundary conditions (2) and the initial
condition (3). It should be remarked here that
the uniform convergence of the infinite series in
(16) or (17) is ensured by the requirements that
F(P), Q(P, 1) and f; (s, f) possess continuous
first and second order partial derivatives in the
space variables, and that Q (P, () and f; (s;, £
possess continuous first order partial derivatives
with respect to ¢.
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REDUCTION TO SIMPLER PROBLEMS

The splitting up of heat conduction problems
into several simpler ones is well-known and has
been extensively used. It is interesting to see how
easily the general problem treated here can be
reduced to a number of simpler problems,
starting from the solution (16).

Let

T,(P,1) =3 C (Am) ¢ (Am, P) exp (— k)2f)

m=1

g
[z ¢ (Am, P) [F (P} —;‘—S"é Ty (P,O)dV. (18)
Then, it is easily seen that T, (P, ) is the solution

of

oT, t )
V2T, (P, f) —-1 la(f ), PinR,t>0.
with
oT, (P 3
5B R0 | g1 21 =0,
L (19)
Pon St >0,
and
q
T, (P, 1) = F(P) — X T (P, 0),
j=0
’ PinR,t=0. |
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Again, let
Feo
6; (P, 7, 1) =X C(Am) ¢ (Am, P) €xp (— «A30)
m=1

Jx® m, P)Tos (P, ) dV.  (20)

Then, it is easily seen that 6; (P, 7, t) are the
solutions of

100; (P, , t )

V20, (P, 7, 1) = —L%;L)
PinR,t >0,
with
00; (P, 7,
i) P | gy 8y(P, =0, | 21)
Pon S;,t >0,
and
O1(P,7.1) = To; (P, 7),
PinRt=0. |

Also, it follows from (20) that

EJ

dr

7
T =T

l"_l

00; (P, +', t'—-’T):,

m $m (P) exp (— xAZt)

I
F/l

1

JO exp («xAZ7) JR ¢m(P) Toj(P, 7)dV dr] .

(22)

Using (18), (20) and (22) the solution (16) can
be rewritten as

FZ :

TP =T, 1+ z {T()j (P, 1)

j=0

t[e6;(P, 7't —7) d
LR e

The To;(P,?) functions are the steady-state
solutions in which “‘#” plays the role of a para-
meter and are determined from the system (11);
Ty (P, t) and O; (P, T, t) are the transient solutions
determined from the completely homogeneous
systems (19) and (21) respectively, in which the
forcing is due to fictitious initial temperature

23)
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distributions only, and where “” is looked upon
as a parameter. For sufﬁciently large values of
time ¢ the transient response I7 (P, ) becomes
vanishingly small and the temperature distribu-
tion tends to

q

T, 0) = z {TM . 1)
=0

t[00; (P, 7'yt — 1) d
- 0 31" =T T

The asymptotic behavior of T, (P, t) for large ¢
is termed the quasi-steady response, although
this term is usually used in cases where Q(P, ¢)
and f; (s, t) remain bounded as ¢ —+ oo, such as
the simple harmonic variation of the source
functions with ¢.

If Q (P, 1) and f; (51, f) are time-independent,
(24) becomes

(24)

T,(P) =3 T (P) (25)

where T, (P) is the steady response.

CONCLUDING REMARKS

For regions of simple geometry the Ty
functions may be available in standard works
when A; and B; are constants. Especially in one-
dimensional regions most are readily obtainable
in closed form. In two and three-dimensional
regions, the solutions of Ty can be determined
in the form of single and double infinite series,
respectively. The easiest method of solution
seems to be the repeated use of one-dimensional
finite integral transforms. The application of the
three-dimensional or resultant transform (5)
to the determination of To; (P, ) in three-
dimensional regions yields

% b (P) [s, m (57, £) dSy
AR [t (P AV

(U=12...,9), (26a)

I XC 6 (P) [ ém (P) Q (P, AV
T"““’”):EZ PN (oF
(26b)

Instead of this triple infinite series form of
solution, when the particular geometry of the

TOj(P’t):

m=1
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region in question is given, an alternate expres-
sion in terms of double infinite series can be
achieved by repeatedly applying to (11a) those
one-dimensional components of (5) which do
not utilize as kernels that component of the
eigenvector which corresponds to the space
variable in the direction of n;. (11a) is thus
converted into a linear, second order, ordinary
differential equation subject to the boundary
conditions (11b) transformed similarly, with 4;
and B; assumed constant. The resulting system
is readily solved and upon inversion gives the
solution to T (P, ¢) in the form of double
infinite series. In other words (26) gives rise to
summation formulas for certain series summed
over the discrete set of infinite terms of one of
the three components of the eigenvalues Aj.
To clarify this point further a simple example is
in order.

Consider a two-dimensional problem inside
a circle of radius 4. For the sake of simplicity
let @ (P, 1) = 0. Since g = 1, we may drop the
subscripts i and j. The system corresponding
to (11), in plane circular polar co-ordinates, is
given by

¢ 10 1 82)
(é}_z_{,_,’:a—r- )“—246’7’92/ To(r,(p,t)~0,
O<r<a;0<e<2m, (273)
and
T, (r, o, t
ATTLPD | g g =10,
(r=a;0 <¢<27). (27b)

The corresponding eigenfunctions satisfy the

system
o
(é;§+;5;+r2 o
O<r<a;0<

aékm (I‘, 99)

1 0 1
+ f\km) dim (r, §) =0,

g <2m), (28)

+ B dpm (r, ) = 0,
(r=a;0 <p<2n). (28b)
The solutions of (28a) well—behaved at the origin

are
cos k
¢km (ra ‘P) = Jp (Akmr) {sin kg},

(k=0,1,2,..). (299)
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The eigenvalues Ar,, are the mth positive roots
of

or of
(k + @) Ji (Aema@) = Xgm aJxn (Aema), (30)
where

— Blx (Agma) =0,  (29b)

_aB
w=0

and the prime in (29b) denotes differentiation
with respect to the argument. By (7) and (29a),

1 a (2r cos? kcp} A
o ) .
Crm JOJ. Ji et {sin2 ke rdrde

(a Akm o P‘g - kﬁ) J;% (’\kma),
k=12,...

=0, 1)

)\2
2 > (32)

— 57~ @R, + 1) J3 (Aond),
Om

k=10
In view of (29a) and (32), (26a) gives
TO (I‘ (P, t) ==

Jo (Aom)/ o (Aoma)

2 j flg', ndy

T (Xem?) Tk (Axmat) r” 1@ )

L (az/\im - Mz - kz)

+2

cos k(p — ¢) dq:’]. (33)

To obtain a simple infinite series form of solution
for Ty (r, @, £) we define a finite cosine transform
of Ty, (r, @, 1) as follows:

Tolr. ke, t;9) = [7 Ty (r, @, ) cos k (p — ¢') do,

(34
the inversion of which is given by
1
T, (r, @, ©) =§;T:1”1, (r, 0, t; ©)
IN e ne. 69
T s

k=1



CONDUCTIVE HEAT TRANSFER IN FINITE REGIONS

Applying the transform (34) to the system (27)
we get

2 1 0 k. ,
<8—"2+;5_72)T0U’k3 ta(p)z()’
0<r<a, (36a)
with
87.“0 i} ol r hd r
Ak ;) + BT, (nk t;¢) =k, ; ¢),
r=a. (36b)
Solution of (36) is readily obtained as
~ o a Nkt e)
To(r,k,t,¢)—2(a) m (37)

Introducing (37) into (35) we have,
a

1 27 , ,
To(",‘P,t):zﬂ,A [ﬁjo f((Paf)d‘P

+2 Z (g)kf ARG t)(ckoS+ k :;p — ) d(p,]-

k=1

(3%)
Comparison of (33) and (38) results in the
summation formula:

r\¥ i (Aemt) Ik (Akma)
(o) —20+0 > TR
m=1

(> 0), (39)
where the summation is over the positive roots
of (30) for a given value of k. That (39) is indeed
correct can be easily shown by expanding (r/a)*
in an infinite series of Jy(Agm#r) in 0 << r < g and
over m, and determining the expansion coeffi-
cients by utilizing the following integral formulas:

(o) o Gemnrrar =22 5 e

2
/\km

and
a J2 (Agma)
JoJIZ‘ ()\kmr)rdr = k2/\,2cm—

Although the expansion of an arbitrary function
into a complete set of orthogonal functions is
very easy, the inverse problem of finding the
function to which a given infinite series of a
complete set of orthogonal functions converges
(in the mean) is not so easy, if at all possible.
In other words, had we not utilized the above
transform method of establishing (39), we might

@), + ut — k).
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possibly have had difficulty in trying to sum the
right-hand side of (39). The situation here is
analogous to the ease of differentiation in
contrast with the difficulty of integration of
functions.

We have thus illustrated by this example
how the Ty (P.¢) functions of (11) in two-
dimensional regions can be expressed in the
form of simple infinite series rather than double
infinite series. Similarly, the To; (P, ¢) functions
in three-dimensional regions can always be
expressed by double-infinite series provided that
their solution in the form of triple-infinite
series is obtainable. In the case of one-dimen-
sional regions this procedure yields the solutions
of To; (P, ) in closed form assuming again that
they possess simple-infinite series form of
solutions.

The boundary conditions (2) cover a wide
variety of cases arising in engineering applica-
tions. In particular, conditions of prescribed
surface temperature, prescribed surface heat
flux and Newtonian boundary conditions, or
any combination of these can be easily realized
by assigning appropriate values to A;, B; and
Ji (i, ).

The general problem treated by Ojalvo [4]
becomes a special case of the problem considered
here. Indeed, when Q (P,?) and f; (si, f) are
separable functions of P and ¢, our solution (16)
or (17) reduces to the combination of equations
(4) and (19) together with equations (7'') and (23)
integrated with respect to time, of the above
reference.
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Résumé—Les techniques de transformation des intégrales finies sont appliquées a la solution des
problémes transitoires a trois dimensions de conduction de chaleur avec sources de chaleur fonctions
générales du temps et des conditions aux limites. Ces derniéres comprennent, comme cas speciaux, les
conditions aux limites du premier, deuxiéme et troisitme type (température donnée, flux de chaleur
donné, conditions de convection de Newton) ou n’importe quelle combinaison de ces trois, telles que
les ingénieurs les rencontrent souvent dans leurs problémes.

La solution est obtenue a ’aide des termes en régime transitoire et en régime quasi-stationnaire et
est donnée sous forme de séries infinies, D’aprés la solution, on voit comment le probléme général peut
étre ramené a plusieurs problémes plus simples pour lesquels on peut trouver facilement les solutions
dans la litterature. Cet article constitute une généralisation d’un précédent article dans lequel on
suppose que les fonctions représentant les sources de volume et de surface peuvent étre séparées en

variables espace et temps.

Zusammenfassung—Mit Hilfe der endlichen Integraltransformation werden dreidimensionale, insta-
tionidre Wirmeleitungsprobleme mit allgemein zeitabhdngigen Wirmequellen und Grenzbedingungen
gelost. Letztere umfassen als spezielle Fille die Grenzbedingungen erster, zweiter und dritter Art
(vorgegebene Temperatur, vorgegebene Wirmestromdichte und Newtonscher Konvektionsansatz
oder irgendeine Kombination dieser drei, wie sie oft in Ingenieurproblemen auftritt.

Die Losung erhidlt man in Form quasistationdrer und instationdrer Ausdriicke, die als unendliche
Reihen wiedergegeben sind. An Hand der Losung wird gezeigt wie das allgemeine Problem auf
verschiedene, einfachere reduziert werden kann, deren Losungen gewdhnlich aus der Literatur zu
erhalten sind. Die vorliegende Arbeit stellt eine Verallgemeinerung einer kiirzlich erschienenen Arbeit
dar, in der das Volumen und die Oberflichenquellenfunktionen als trennbar in Raum- und Zeitver-

dnderliche angenommen waren.

ApHOTanuE—MeToN KOHEYHHX MHTETrPAJbHEIX ITpe00pasoBAHMIl UCIOIB30BAICH [JIA pelic-
HEA TPOXMEPHHX 33734 HeCTAHUOHAPHOH TeINIONPOBOJHOCTH NPM IPUOSBOJILHOH 3aBHCH-
MOCTH OT BpPEMEHM HCTOYHHMKOB Tellja M rpaHuwyHbix ycuosmii. Ilociegnue BRiO4a0T Kak
Y3CTHEE CJIyd4au PPAHAYHHE YCIOBMA [IEPBOI'0, BTOPOTO M TPETHEr0 POfa (COOTBETCTBEHHO
8aJaHHAA TEMIIEPATypa, BANAHHKH TEIIOBOM MOTOK M 8aKOH KOHBeKKMM HETOHA) MM
mo6ue KOMOMHALMA 3THX TPeX YCIOBHMI, YTO 4ACTO BCTPEYAETCA B TeXHUYECKHX 3amadax.

Pemenue BHPaKaeTcA B BUAE KBASUCTANMOHAPHHX M IEPEXONHAEX WICHOB U MPEACTABICHD
B Bufe GeCKOHEYHHX PAXOB. VI3 T0r0 pemeHNs BUAHO, KAK MOKHO OOMyI0 3afa4dy CBECTH I
HECKOJbKUM (oJjlee IPOCTHIM, pelieHMe A KOTOPHIX OOHYHO JIErKO HAlTH B JATEPAType.
Crarpsi 0000Iaer MAHHEIG OfHON M3 HEAABHUX CTaTell, B KOTOPOH NpeamoyaraiIoch, 4To
o0beMHBIE W TIOBEPXHOCTHHE YacTH QyHKOUHE, ONMCHBAOMUX MCTOMHMKMA, PasielfiNch 110

IPOCTPAHCTBEHHHIM N BPEMEHHHIM IepeMeHHbBIM.



