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ON THE THEORY OF CONDUCTIVE HEAT TRANSFER IN 

FINITE REGIONS* 

NURJJTTh Y. tiL(XRt 

(Received 22 January 1963 and in revised form 25 September 1963) 

Abstract-Finite integral transform techniques are applied to the solution of three-dimensional, 
transient heat-conduction problems with general t~e~e~ndent heat sources and boundary conditions. 
The latter includes, as special cases, the boundary conditions of the first, -rid and thud kind 
@escribed tem~~t~, press&& heat ffux and Newtonian convection conditions) or any combina- 
tion of these three, which are often encountered in engineering problems. 

The solution is obtained in terms of quasi-steady and transient terms and is given in the form of 
infinite series. From the solution it is shown how the general problem can be reduced to several 
simpler ones for which solutions may usually readily be available in the literature. The paper con- 
stitutes a generalization of a recent one in which the volume and surface source functions are assumed 

separable in the space and time variables. 

NOMENCLATURE 

4%) 2 0, boundary coefficient func- 
Msr) > 0, tions defined on St ; 

A 2 0,B > 0, constant boundary coeffi- 
cients on circle r = a; 

4 circle radius; 
C&J or Cm, coefficients defined by (7); 
cknz, coefficients defmed by 

(32); 
P(P), initial temperature distri- 

bution function in R ; 
.m, 0, source functions on St; 
.f(R 6, source function on circle 

r = a; 

f;po, 
1,293, f - . , 4; 
Bessel function of the first 
kind of order k and of 
ar~ment x ; 

.A O,LZ...,q; 

: 
thermal conductivity of R; 
0,1,2,...,co; 

m, 1,2,. . . , co; 

nt, outward normal of St ; 
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point in R; 
internal heat generation 
function per unit time and 
per unit volume; 
number of co-ordinate sur- 
faces of R; 
homogeneous region in 
P-space ; 
radial space co-ordinate in 
plane circular polar co- 
ordinates; 
ith co-ordinate surface of 
R; 
point on Si; 
temperature distribution in 
R 
temperature dist~butio~ 
defined by (11) or (26); 
temperature distribution 
defined by (27); 
temperature distribution 
defined by (18) or (19); 
temperature distribution 
defined by (24); 
time variable; 
volume in P-space; 
Kronecker delta; 

partial derivative with re- 
spect to t ; 
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temperature distributions 
defined by (20) or (21); 
thermal diffusivity of R; 
eigenvalues in P-space ; 
eigenvalues in r, y-space: 
dimensionless constant de- 
fined by (31); 
parameter and variable of 
integration ; 
eigenfunctions in P-space; 
eigenfunctions in r, p 
space ; 

STATEMENT AND SOLUTION OF THE 

PROBLEM 

Consider a stationary, homogeneous, isotropic 
region R with constant thermal properties. Let 
its bounding surface S be composed of con- 
tinuous co-ordinate surfaces Si, q in number, 
in a conveniently chosen three-dimensional 
co-ordinate system. The equation of heat con- 
duction [a is 

angular space co-ordinate 
in plane circular polar co- 

P in R, t > 0, (1) 

ordinates ; 
gradient vector in P-space ; 

with the general boundary conditions 

Laplace operator in 
space ; 

c”( > a( 1 
r. or -0YT- ; 

P- 3T(P, t) 
Ai (Si) --& - + Bi (G) T (P, t) == ji (XL t), 

P on Si, t > 0, (2) 

of 
and the initial condition 

T(P,t)==F(P), PinR, t-0. (3) 
of 

Consider the three-dimensional Sturm-Liou- 
ville system 

(‘i, JR4f,t(P) ( > d V, f”;;‘” integral transform 
. 

c-h finite cosine transform 
( ) defined by (34). 

INTRODUCTION 

IN SOLVING beam vibration problems with time- 
dependent boundary conditions Mindlin and 
Goodman [l] used a modified separation-of- 
variables method which was later extended by 
Chow [2] and Archer [3] to reduce the non- 
homogeneous boundary conditions to homo- 
geneous ones. In a recent paper of this journal 
Ojalva [4] applied this technique to solve heat- 
conduction problems with time-dependent heat 
sources and bo~dary conditions. In all of these 
references the timedependence of the boundary 
conditions and of the heat source is introduced 
by separable space and time functions. The 
purpose of this paper is to determine the 
temperature distributions in homogeneous, finite 
continua for which internal heat generation rate 
and boundary conditions are arbitrary functions 
of space and time. The method used is the well- 
known tite integral transform method which 
dates back to 1936 in its first application to the 
heat equation by Doetsch [5], and from that 
time has been utilized constantly by many 
researchers. 

V%n (P) + hi #KQ (P) = 0, Pin R, (4a) 

With I& (P) as kernel, a three-dimensional finite 
integral transform of T (P, t) is defined as 

T (Am, t) = J-, #J (A,, P) T (P, 0 d I/. (5) 

It follows, from the well-known theorems of 
completeness and orthogonality of the eigen- 
functions $?a (P) satisfying system (4) that 
T (P, t) can be expanded into a triple infinite 
series as 

r(P,t)=~C(h,)~!h,,P)~(A,,t). (6) 
I?=- 1 

where 

& = S, 4” (bt, P) dv. (7) 

(6) is sometimes called the inversion formula 
for (5). Applying the transform (5) to V%T (P, t) 



CONDUCTIVE HEAT TRANSFER IN FINITE REGIONS 309 

and using the Gauss Theorem in region R one It is therefore appropriate to speak of resultant 
gets eigenfunctions and resultant eigenvalues (or 

WV,, t) = 2 Js, [+m. (si) z$+) 
eigenfunction and eigenvalue vectors) in con- 
nection with (4). The above results also apply 

I to the diffusion equation in n-dimensional space 
nrovidina the transform (5) is taken in the 
I \ I 

n-dimensional space. 
It cannot be shown directly from (6) that the 

which, on incorporating (2) and (4b) becomes 
latter does satisfy the boundary conditions (2). 
This is due to the convergence problems that 

- A;T(h,, t). (8) 
It is to be noted that if Ai = 0, [&/Ar (sr)] is to 
be replaced with [- l/B{ (st)] . [&$,/an,] in (8) 
and all the results will be applicable for this case 
also. 

The application of (5) to both sides of (1) 
yields, in view of (8), the following ordinary, 
first order, linear differential equation 

dT’(bn, t) 
dt 

+ @,,T(hn, t> = ;e (kn, t) 

arise when dealing with series-form solutions. 
To avoid this situation it is desirable to obtain 
from (6) an alternate form of solution composed 
of quasi-steady-state and transient parts. For 
this purpose it is required that the temperature 
functions Tor(P, t) be solutions of the following 
system : 

V2T0j (P, t) + 2 Q (P, t) = 0, P in R, (1 la) 

A (a) “To;; t, -+ Bi (si) To3 (P, t) = 
t 

= &jfi (Si, t), Pon &. (lib) 

+Kq 
/, J 

4 (hn, Sl> 
si Ar (si) ji (st, t) d&. (9) Here it is necessary to assume further that 

i=l 
Bt (sf) # 0 for all i = 1,2,. . . , q, simultaneously. 
Otherwise the solutions Toj (P, t) satisfying (11) 

The solution to (9) subject to (3) transformed by do not exist, unless 
(5) is 

T(h, t) = exp (- Kht,t) 
1 

F:(X,J soi J R Q (f’, t) d V i- K 6t3 J s,fz d& = 0. 1 
The application of the Gauss Theorem to 

system (4) shows that 

+ ,e js. $$$$I (a, T) d&-j d+. (10) Xl = c??z is [V&n (PI2 d v 
i=l ’ 

R 

Thus, (6) used in conjunction with (7) and (10) 
gives the solution to the problem. +f @a) dS , Arh) # 0, 

The eigenfunctions I&(P) and the corre- i=l 

sponding eigenvalues A, are to be determined 
separately from (4). It is well established, in 

(12a) 

standard works on the theory of eigenvalue hi = C, j, [V& (P)lz dV, Ai (si) = 0 for all i. 
problems, that & and A, each comprise a 
discrete set of infinite terms which are all real. 

(12b) 

In three-dimensional problems & and A, will 
each be made up of three components in general. 

It follows from (12) that, excepting the case of 
Br (SZ) = 0 for all i, which requires special 
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attention, the values of ht, are all non-zero. 

Then, the application of (5) to 5 V2Taf (P, t) 
j-0 

yields, in view of (ll), 
4 

c 
zlj (Am, t) = $- [& (Am, 0 

nr 
S==O 

+ 2 ~~i’~~~~‘~ (pi, t) dam]. (13) 

Using (13), (10) is rewritten as 

ii&$, t) = 2 T0j (X,, t) + exp (- $J> (F(&?S) 
j=O 

+cv (Am, 4 dT1). (14) 

(6) can be written in the equivalent form 

T (P, t) = 5 Toj (P, t) + g C (&tic) 46 (.&a, P) 
j=O m=l 

[T(bn, 0 -,~ozI~ (bn, 0. (15) 

Introducing (14) into (15) one gets 

T (P, t) = $I Taj (P, t) + 5 Cm &a (P) 
j=O m=l 

exp (- ~A2,0 {.I-, &z (p) F(P) dV 

-j$o [S, &a (P) iL;of (p, 0) d v 

-i- j$ exp (KX$T) fR +m (p) ri’,, G’, ~1 d Y W 3. 
PI 

Here the infinite series terms contain the Toj 
fixlctions. An equivalent expression containing 
the heat source and boundary terms is obtained 
by introducing (13) into (16) : 

T (I’, t) = 5 Tog (P, t) + $ &I. #m (0 
j=O WI=1 

exp (- +$) I J R nt J r 4b (P)F(P)dV 

1 t --J exp(K+) i A$ 0 [J RbL(P) e(P, T)dV 
4 

+ c5 ~,~~~~ (si, 4 d%] d+ (17) 
I 

i=l 

(17) may be preferred to (16) in cases where the 
evaluation of the surface integrals is less 
laborious than that of the volume integrals. 

It can be shown, by direct s~bsti~tion, that 
(16) and (17) satisfy the differential equation (l), 
the boundary conditions (2) and the initial 
condition (3). It should be remarked here that 
the uniform convergence of the infinite series in 
(16) or (17) is ensured by the requirements that 
F(P), Q (P, t) and A (SI, t) possess cont~uous 
first and second order partial derivatives in the 
space variables, and that Q (P, t) and 3 (81, t) 
possess continuous first order partial derivatives 
with respect to t. 

REDUCMON TO SIMPLER PROBLEMS 

The splitting up of heat conduction problems 
into several simpler ones is well-known and has 
been extensively used. It is interesting to see how 
easily the general problem treated here can be 
reduced to a number of simpler problems, 
starting from the solution (16). 

Let 

Tl (P, t) = 2 C (b> 4 (Am, P) exp (- Kh2,t) 
m=l 

fR + (Aa, R fF 0”) -j; Taf G’, 011 df;. tW 

Then, it is easily seen that Tl (P, t) is the solution 
of 

1 aT* (P, 0 
VsT, (P, t) = i-----g- ~ PinR,t>O. 

? 
with 

Al ($I) 
aT, (P, t) 

an + BI (SZ) Tl (P, t) = 0, 
i 

/ 
(19) 

P on St, t > 0, 

and I 
2-1 (f’, t> = P @‘I - jtor, (f’, 0): 

PinR, t =O. 
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Again. let 

0, (P, 7, r) =F5 C (Am) + (L, P) exp (- exit) 
m=l 

J, 4 (ha, f’> Tojr (P, 4 dv. (20) 

Then, it is easily seen that 0, (P, T, t) are the 
solutions of 

1 aoj (P, 7, t) 
vwj (P? 7: t) = - at - 9 K 

with 

PinR, t >0, 

Ai (si) 
aq (P, 7) t) 

hli +Bi(sz)@j(P,T,t)=O, 

P on &, t > 0, 

and 

05 (P, 7. r) = Toj (P, T), 
PinR,t=O. 

Also, it follows from (20) that 

4 

a@, (P, T', t - T) 

37’ I dr 
/=7 

= 7 C, & (P) exp (- d2 t) m 

j=O 

(22) 
Using (18), (20) and (22) the solution (16) can 
be rewritten as 

4 

T(P,t)=T,(P,t)+ 
z 

Toj (P, 0 
j=O t S[ a@, (P, T', t - T) - 

0 87’ 1 > 
dT . (23) 

7’=7 

The Toj (P, t) functions are the steady-state 
solutions in which “t” plays the role of a para- 
meter and are determined from the system (11) ; 
Tl (P, t) and 0, (P, 7, t) are the transient solutions 
determined from the completely homogeneous 
systems (19) and (21) respectively, in which the 
forcing is due to fictitious initial temperature 

distributions only, and where “T” is looked upon 
as a parameter. For sufficiently large values of 
time t the transient response Tr (P, t) becomes 
vanishingly small and the temperature distribu- 
tion tends to 

(I 

T, (P, t) = ci To5 (P, 0 
j=O t S[ a@, (P, T', t - T) - 

0 37’ I ! dr . (24) 
7’ =T 

The asymptotic behavior of T, (P, t) for large t 
is termed the quasi-steady response, although 
this term is usually used in cases where Q(P, t) 
and fi (.s(, t) remain bounded as t -+ co, such as 
the simple harmonic variation of the source 
functions with t. 

If Q (P, t) and h (si, t) are time-independent, 
(24) becomes 

T, (P) =,:. To, (P) (25) 

where T, (P) is the steady response. 

CONCLUDING REMARKS 

For regions of simple geometry the Toj 
functions may be available in standard works 
when Ac and Bs are constants. Especially in one- 
dimensional regions most are readily obtainable 
in closed form. In two and three-dimensional 
regions, the solutions of TOM can be determined 
in the form of single and double infinite series, 
respectively. The easiest method of solution 
seems to be the repeated use of one-dimensional 
finite integral transforms. The application of the 
three-dimensional or resultant transform (5) 
to the determination of TOM (P, t) in three- 
dimensional regions yields 

To5 (P, t) = 2 An U’> b dm (at> 6 
A5 x2 ; +, (P)r> 

mRi 
??I=1 

(.i = $2, . . . , 41, @a) 

. _ 
Wb) 

Instead of this triple infmite series form of 
solution, when the particular geometry of the 
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region in question is given, an alternate expres- 
sion in terms of double infinite series can be 
achieved by repeatedly applying to (1 la) those 
one-dimensional components of (5) which do 
not utilize as kernels that component of the 
eigenvector which corresponds to the space 
variable in the direction of nj. (1 la) is thus 
converted into a Iinear, second order, ordinary 
differential equation subject to the boundary 
conditions (Ilb) transfo~ed similarly, with Ai 
and Bg assumed constant. The resulting system 
is readily solved and upon inversion gives the 
solution to rOj (P, t) in the form of double 
infinite series. In other words (26) gives rise to 
summation formulas for certain series summed 
over the discrete set of infinite terms of one of 
the three components of the eigenvalues A,. 
To clarify this point further a simple example is 
in order. 

Consider a twodimension~ problem inside 
a circle of radius a. For the sake of simplicity 
let (2 (P, t) = 0. Since q = 1, we may drop the 
subscripts i and j. The system corresponding 
to (ll), in plane circular polar co-ordinates, is 
given by 

and 
(0 < r < a; 0 < 91 < 2~), (27a) 

(1. = a; 0 < 9 < 2~). (27b) 

The corresponding eigenfunctions satisfy the 
system 

(O<r<a;O<p,<27r), (28a) 

(r = a; 0 < v < 27r). (28b) 

The solutions of (28a) well-behaved at the origin 
are 

(k = 0, 1,2, . . .). (29a) 

The eigenvalues Akal are the mth positive roots 
of 

A hkm J;. (bona) -; BJk (&ma) = 0, (‘29b) 

or of 

(k + CL)& (~k,na) = hkn‘dk+1(Akma), (30) 

where 

UB 
p = 7 > 0, 

and the prime in (29b) denotes differentiation 
with respect to the argument. By (7) and (29a), 

k =O._j 

In view of (29a) and (32), (26a) gives 

To (r, 91, t) = 

m a _- 
-- CL Jo (hOd)/Jo (homu) *x 

5-A <a”%, + P3 f 
f W, t) d# " 

??Z=l 

k-l 

cos k (y - p’) d# 
I 

. (33) 

To obtain a simple inbnite series form of solution 
for To (r, p, t) we define a finite cosine transform 
of To (r, (p, t) as follows: 

To (r, k, t; cp’) = ff- To (r, y, t) cos k (p - 9’) dp?, 

(34) 

the inversion of which is given by 

cc 

+.!T’- 
Tr& To (r, k t; ~1. (35) 

k=l 
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Applying the transform (34) to the system (27) 
we get 

f + ; f - ; To (I’, k, t; 91’) = 0, 

with 
0 < r -=c a, (36a) 

A $ (r, k, t; cp’) + B To (r, k, t; p7’) == f(k, t; I$), 

r = a. (36b) 

Solution of (36) is readily obtained as 

(37) 

Introducing (37) into (35) we have, 

a 1 21r 
7-0 (~9 ~120 = m ; 

[S 
f(p;‘, 0 dyi’ o 

m 

+2 
r Ic j+pf($, 0 cos k (F - P’) d@ 

CO a (k + t4 I 

. 

k=l 

(38) 
Comparison of (33) and (38) results in the 
summation formula : 

r k 0 m Jk: (hkmr)/Jk (hk?d 
_ 
a 

= 2 (k + CL> 
c (ash:,, + p2 - k3 ’ 
m=l 

(P > Oh (39) 

where the summation is over the positive roots 
of (30) for a given value of k. That (39) is indeed 
correct can be easily shown by expanding (r/a)k 
in an infinite series of Jk(hkmr) in 0 < r < a and 
over m, and determining the expansion coeffi- 
cients by utilizing the following integral formulas : 

a r k s() (k + z-4 
o a Jk (hkmr)rdr = hZ ___ Jk (hkrna) 

km 
and 

s a 

J: ( hkmr) r dr = 
0 

‘WE!) (ash:, + p2 - k2). 
km 

Although the expansion of an arbitrary function 
into a complete set of orthogonal functions is 
very easy, the inverse problem of finding the 
function to which a given infinite series of a 
complete set of orthogonal functions converges 
(in the mean) is not so easy, if at all possible. 
In other words, had we not utilized the above 
transform method of establishing (39), we might 

possibly have had dithculty in trying to sum the 
right-hand side of (39). The situation here is 
analogous to the ease of differentiation in 
contrast with the difficulty of integration of 
functions. 

We have thus illustrated by this example 
how the Tof (P’ t) functions of (11) in two- 
dimensional regions can be expressed in the 
form of simple infkite series rather than double 
infinite series. Similarly, the Toj (P, t) functions 
in three-dimensional regions can always be 
expressed by double-infinite series provided that 
their solution in the form of triple-infinite 
series is obtainable. In the case of onedimen- 
sional regions this procedure yields the solutions 
of Toj (P, t) in closed form assuming again that 
they possess simple-infinite series form of 
solutions. 

The boundary conditions (2) cover a wide 
variety of cases arising in engineering applica- 
tions. In particular, conditions of prescribed 
surface temperature, prescribed surface heat 
flux and Newtonian boundary conditions, or 
any combination of these can be easily realized 
by assigning appropriate values to Ai, Bi and 
fi (Si, 0. 

The general problem treated by Ojalvo [4] 
becomes a special case of the problem considered 
here. Indeed, when Q (P, t) and ff (si, t) are 
separable functions of P and t, our solution (16)’ 
or (17) reduces to the combination of equations 
(4) and (19) together with equations (7”) and (23), 
integrated with respect to time, of the above 
reference. 

1. 

2. 

3. 

4. 

5. 

6. 
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R&~S--L~S techniques de transformation des int&rales fink sont appliquks ti la solution da 
probltimes transitoires B trois dimensions de conduction de chaleur avec sources de chaleur fonctions 
&nkxks du temps et des conditions aux limites. Ces dernieres comprennent, comme cas spcciaux, les 
conditions aux limites du premier, deuxieme et troisieme type (temperature don&e, flux de chaleur 
don& conditions de convection de Newton) ou n’importe quelle combinaison de ces trois, telles que 
les ingenieurs les rencontrent souvent dans leurs problemes. 

La solution est obtenue a l’aide des termes en regime transitoire et en regime quasi-stationnaire er 
est don&e sous forme de series iniinies. D’apr&s la solution, on voit comment le probleme general peut 
&re ramene a plusieurs problemes plus simples pour lesquels on peut trouver facilement les solutions 
dans la litterature. Cet article constitute une generalisation d’un pr&&dent article dans lequel on 
suppose que les fonctions representant les sources de volume et de surface peuvent etre stparces en 

variables espace et temps. 

Zusammenf assung-Mit Hilfe der endlichen Integraltransformation werden dreidimensionale, insta- 
tionlre Wi&meleitungsprobleme mit allgemein zeitabhilngigen Wirmequellen und Grenzbedingungen 
gel&t. Letztere umfassen als spezielle F&he die Grenzbedingungen caster, zweiter und dritter Art 
(vorgegebene Temperatur, vorgegebene WSrmestromdichte und Newtonscher Konvektionsansatz 
oder irgendeine Kombination dieser drei, wie sie oft in Ingenieurproblemen auftritt. 

Die Losung erhllt man in Form quasistationarer und instationiirer Ausdriicke, die als unendliche 
Reihen wiedergegeben sind. An Hand der Losung wird gezeigt wie das allgemeine Problem aut 
verschiedene, einfachere reduziert werden kann, deren Losungen gewiihnlich aus der Literatur zu 
erhalten sind. Die vorliegende Arbeit stellt eine Verallgemeinerung einer kiirzlich erschienenen Arbeit 
dar, in der dss Volumen und die Oberfhichenquellenfunktionen als trennbar in Raum- und Zeitver- 

lnderliche angenommen waren. 

~OTaqaa--MeTO~ KOHeWIblX HHTeFpaJIbHbIX IIpeO6pa3OBaHH8 HcIIOJIb30BaJICH WH p'SUr- 
HAR TpeXHepHbIX 3ana4 HeCTaI&HOHapHOti TeIlJlOIIpOBO~HOCTU ITpI% IIpH03BOJlbHOti 3aBklCkI- 
MOCTH OT BpeMeHH IlCTO~HkIKOB TellJIa II FpaHWIHbIX yCJlOBU& nOCJIeaHIie BKJIIO'IBIOT KaK 

YaCTHbIe CJlygaM FpaIiEi'SHEIe yCJIOBE¶fi IIepBOrO, BTOpOI'O II TpeTberO pOAa (COOTBeTCTBeHHO 
3aaaHHaH TeMnepaTypa, 3aJaHHbIti TeIIJIOBOti IIOTOK Ii 3aKOH KOHBeKqIlll HbIOTOHa) ElJIlI 
nm6Me KOM6EIHaqllEI 3TIlX TpeX yCJlOBH& ¶TO qaCT0 BCTpeqaeTCR B TeXHEWeCKBX 3aAaqaS. 

Perueme BbIpaHtaeTcn~ mge KsaaklcTa~moHapKbIxKnepexo~bIx~ne~o~ MnpegcTameKf-1 
B BMAe 6eCKOHesHbIX pRJ&OB.% aTOr peIIleHWI BHAHO,KaK MOH(H0 obmyto 3aAasy CBeCTM I: 
HeCKOJIbKElM 6onee IIpOCTbW, peIJ.IeHlle &lIJI KOTOpbIX 06bIYHO JXerKO HafiTH B JIHTepaType. 
CTaTbJI o6o6uaeT naHHbIe OaHOti K3 HeAaBHIlX CTaTei%, B KOTOpOt IIpenIIOJIara.?OCb, YTcg 
o6%.eMm&e H IIOBepXHOCTAbIe =iaCTK (PyHKqHti, OIIMCbIBaloJIViX EICT09HHKEI, pa8XeJIHnHCb nO 

IIpOCTpaHCTBeHHbIM II BpeMeHHbIM IIepeMeHHbIM. 


